Глава 8 Rambler's Top100

ПРИЕМНАЯ АППАРАТУРА СПУТНИКОВОГО ТЕЛЕВИДЕНИЯ

8.1. Облучатели и поляризаторы

Принимающая головка, находящаяся в фокусе параболического зеркала антенны, состоит из трех частей: облучателя, поляризатора и конвертера (рис. 8.1).

Эти функционально различные блоки конструктивно можно объединить и выполнить в одном корпусе (попарно или все три элемента вместе).

Отраженный параболической антенной сигнал идет на облучатель. Его назначение — передать принятую антенной энергию телевизионного ретранслятора спутника по волноводу к конвертеру.

Облучатель — один из важнейших узлов антенной системы, поэтому к нему предъявляются определенные требования: диаграмма направленности должна быть осесимметричной и без боковых лепестков; облучатель не должен сильно затенять параболическую антенну, так как это приводит к искажению ее диаграммы направленности и снижению коэффициента использования поверхности параболоида вращения.

8-11.jpg

8-12.jpg

Облучателями параболических антенн служат слабонаправленные антенны. Это могут быть рупоры, щелевые антенны, спирали, диэлектрические антенны и др. Наиболее простыми являются облучатели в виде открытого конца волновода — прямоугольного или круглого сечения (рис. 8.2).

Волновод круглого сечения в большей степени удовлетворяет требованиям, предъявляемым к облучателям антенных систем,— диаграмма направленности осесимметрична, в отличие от пирамидального (прямоугольного) волновода.

Конструкции облучателей для осесимметричной и офсетной антенн несколько различаются. Это связано с тем, что параболическая антенна характеризуется отношением ее фокусного расстояния к диаметру параболоида вращения (F/D).

Большинство изготавливаемых сейчас осесимметричных спутниковых антенн имеют параметр F/D примерно 0,3...0,4, а офсетные — порядка 0,5...0,6. В соответствии с этим облучатели для осесимметричных и офсетных антенн изготавливают с разными «углами раскрытия».

В конструкции современных облучателей предусмотрены три металлических кольца для лучшей фокусировки электромагнитных волн и обеспечения более узкой диаграммы направленности антенны. Таким образом, облучатель является направленной антенной, которая установлена в фокусе параболического отражателя (рис. 8.3, 8.4).

Облучатель устанав ливается для более пол ного использования по верхности зеркала и реа лизации максимального коэффициента усиления антенны.

Электромагнитная вол на, распространяющаяся в пространстве от переда ющей антенны спутника до антенны наземной стан ции, характеризуется по ляризацией, т. е. ориента цией вектора напряжен ности электрического по ля Е относительно поверх ности Земли (см. гл. 1, п. 5).

Поляризатор является устройством, которое обе спечивает выбор необходимого вида поляризации принимаемой радиоволны. Обычно поляризатор устанавливается между облучателем и конвертером (рис. 8.5). При сборке важно обеспечить герметичность соединения. Так, например, резиновые прокладки должны точно располагаться в металлических пазах и не иметь перекосов.

По принципу своего действия поляризаторы могут быть механическими, ферритовыми (электромагнитными) и импульсными ферритовыми.

В состав механического поляризатора входит петлеподобный или штыревой проводник (3) (элемент связи с электрическим трактом конвертера) и исполнительный механизм (6) (рис. 8.6). Элемент связи (4) входит в электромагнитное поле волновода и преобразует его энер

8-13.jpg

8-14.jpg

8-15.jpg

гию в электрический ток. Такую же роль выполняет любая телевизионная антенна, которую мы привыкли видеть на крышах зданий или мачтах.

Для того чтобы в элементе связи развивалась максимальная электродвижущая сила, которая в его проводнике создает наибольшее электрическое поле, необходимо придать зонду такое же положение, как и излучателю антенны на спутнике. Соответственно приемная система должна отделять сигналы одной поляризации от другой и принимать их отдельно.

В механических поляризаторах переход с одной поляризации на другую осуществляется повышением напряжения питания от 13 В (V поляризация) до 18 В (Н поляризация). Система с переключением позволяет получать два фиксированных значения поляризации, выбор которой происходит механическим перемещением — поворотом вокруг своей оси элемента связи с помощью шагового электродвигателя. Наличие подвижных элементов снижает надежность механического поляризатора.

В электромагнитном поляризаторе (рис. 8.7) выбор поляризации (рис. 8.8) осуществляется изменением величины тока в катушке (3), намотанной на ферритовый сердечник (2). Надежность такого поляризатора выше, так как отсутствуют подвижные механические детали. К тому же, поляризаторы с токовым управлением позволяют выполнять плавную подстройку поляризации.

Поляризация сигнала, который передается со спутника, строго параллельна (Н) или перпендикулярна (V) поверхнос-

8-16.jpg

8-17.jpg

ти Земли только на долготе самого спутника. Если прием осуществляется более на Восток или на Запад, то из-за кривизны поверхности Земли плоскость поляризации больше наклонена относительно ее поверхности. Чем дальше долгота точки приема находится от долготы спутника, тем этот угол наклона больше. В соответствии с этим поляризатор

размешается под большим или меньшим углом к поверхности Земли.

Подобная проблема возникает в том случае, если антенну устанавливают с позиционированием на несколько спутников. Для каждого ИСЗ угол наклона свой, поэтому и необходима плавная токовая подстройка поляризации. Для каждого спутника выбирают свое значение управляющего тока и угол наклона плоскости поляризации к горизонту.

На европейских спутниках (ASTRA, EUTELSAT и др.) в основном используется линейная поляризация, а на российских (GALS1, GALS2, TDF2) — только круговая. Для приема круговых волн перед поляризатором устанавливают еще один элемент — деполяризатор, который преобразует круговую поляризацию в линейную (рис. 8.9).

Устройство, преобразующее один вид поляризации поля в волноводе круглого сечения (2) в другой, представляет собой отрезок волновода, в котором имеются продольные неоднородности в виде диэлектрических пластин (материал тефлон или др.) (1) и металлических стержней (Н или V). Очевидно, что фазовые скорости волн, у которых векторы f напряженности электрического поля параллельны или перпендикулярны пластинам или стержням, различны.

Пусть в волноводе круглого сечения с продольными неоднородностями распространяется линейно поляризованная волна, у которой вектор Е образует с плоскостью неоднородностей угол 45°. Разложим этот вектор на две составляющие: параллельную и перпендикулярную плоскости неоднородности. На входе деполяризатора обе составляющие поля одинаковые и имеют одинаковые фазы. Если длина, параметры и конфигурации пластин или стержней подобраны таким образом, что на выходе устройства разность фаз между параллельной и перпендикулярной составляющими вектора f равна 90° (3.14/2), то на выходе устройства вместо линейно поляризованного поля получим поле с круговой поляризацией. Это и есть поляризатор 3.14/2. Если в такой поляризатор поступает поле с круговой поляризацией, то оно преобразуется в поле с линейной поляризацией. В зависимости от положения диэлектрической пластины и штырей в волноводе осуществляется преобразование круговой поляризации в вертикальную или горизонтальную.

В ряде случаев при приеме сигналов с обоими видами

8-18.jpg

8-19.jpg

поляризации (линейная с европейских спутников и круговая с российских GALS и TDF2) можно обойтись и без деполяризатора. Однако при этом скажется проигрыш на 3 дБ в уровне кругового сигнала, что соответствует увеличению требуемого диаметра антенны в 1,4 раза. Для трансляций с GALS это не критично, так как на территории Республики Беларусь его сигнал принимается, например, в Минске на «тарелку» значительно меньшего диаметра (0,6...0,9 м), чем сигналы с любого европейского спутника.

Поляризаторы различаются еше и с точки зрения дискретности (прерывистости) изменения поляризации. В механических поляризаторах плоскость поляризации меняется дискретно на 90°. Поляризаторы с токовым управлением позволяют плавно изменять плоскость поляризации.

Существуют также импульсно-ферритовые поляризаторы, в которых поляризационный зонд передвигается с помощью механизма. Для управления этим механизмом к поляризатору посылается последовательность импульсов, длительность которых несет информацию о требуемом положении поляризатора. В таких поляризаторах плоскость поляризации меняется дискретно, но с небольшим шагом дискретизации.

Электромеханические поляризаторы требуют трех управляющих сигналов от ресивера, в то время как магнитным необходимы только два (рис. 8.10).

Преимуществом электромеханических поляризаторов по сравнению с магнитными являются несколько меньшие потери сигнала. Сейчас электромагнитные поляризаторы используются в основном в С/Кu-роторах.

8.2. Высокочастотные малошумящие преобразователи

Кроме облучателя и поляризатора в фокусе приемной параболической антенны устанавливается высокочастотный малошумяший усилитель-преобразователь, так называемый конвертер. В зарубежной литературе по спутниковому телевидению он сокращенно обозначен как LNB (рис. 8.11).

8-21.jpg

Это небольшой электронный блок, который собирает электромагнитный сигнал, отраженный от зеркала антенны, осуществляет его преобразование в более низкочастотный и усиливает его. Необходимость уменьшения частоты принятого сигнала объясняется следующими требованиями.

Наземные антенны спутникового телевидения могут устанавливаться на расстоянии до нескольких десятков метров от ресивера. Для передачи спутникового сигнала необходим специальный кабель с небольшим затуханием на частотах до 2 ГГц. Однако спутники в Ки-диапазоне работают на частотах в 5...6 раз больших. В обычном коаксиальном кабеле, используемом при приеме наземного телевидения в диапазонах MB и ДМВ, сигнал спутникового телевидения полностью рассеивается (поглощается) при длине кабеля около 1 м. Поэтому в приемной аппаратуре спутникового телевидения необходимо предусмотреть такое устройство, которое могло бы снизить частоты сигналов, передаваемых по кабелю от антенны к ресиверу. Таким устройством и является конвертер.

В истории развития конвертеров можно выделить следующие этапы: параметрические усилители, использующие для усиления высокочастотную «накачку»; системы на туннельных диодах; транзисторные усилители. Сегодня наиболее широко используется система третьего типа, так как транзисторные конвертеры отличаются низкой стоимостью, простотой настройки и хорошими техническими характеристиками, особенно когда появились транзисторы на арсениде галлия (GaAs).

Сигнал, отраженный от зеркала параболической антенны, например в полосе частот 10,9...11,7 ГГи, поступает на МШУ (1), состоящий из нескольких транзисторов (рис. 8.12). Такой МШУ может усиливать принятый с ИСЗ сигнал на 30 дБ. Полосно-пропускаюший фильтр (ППФ), или фильтр верхних

8-22.jpg

8-23.jpg

частот (ФВЧ) (2), служит для ослабления шумов зеркального канала и снижения паразитного излучения частоты гетеродина.

Важнейшую роль в устройстве конвертера играют смеситель (3) и гетеродин (4). Последний генерирует сигнал с частотой 10 ГГц, который подается на смеситель (3). В смесителе происходит основное преобразование: из сигнала спутникового телевидения благодаря сигналу гетеродина вычитается 10 ГГи. Результирующий сигнал поступает на усилитель промежуточной частоты (УПЧ) (5) в полосе частот 0,9...1,7 ГГц. В такой полосе сигнал спутникового телевидения можно подавать по кабелю к ресиверу. Однако в каскадах ФВЧ и смесителе было дополнительное затухание сигнала порядка 10...12 дБ. Поэтому перед подачей спутникового сигнала в кабель УПЧ повышает его уровень примерно на 30 дБ.

Конвертер предназначен для установки в фокусе параболической антенны с соотношением F/D, равным 0,2...0,4 (рис. 8.13). Например, фокусное расстояние F = 750 мм, а диаметр D = 2000 мм. В данном случае отношение F/D = 0,375.

СВЧ преобразователь снижает частоту сигналов передатчика спутника в полосе частот 10,95...11,36 ГГц на 10 ГГи и имеет коэффициент шума (Кш) не более 5...6 дБ. По сравнению с Кш конвертеров современных зарубежных фирм это низкий показатель. Однако необходимо учесть то, что этот конвертер предназначен для самостоятельного изготовления опытными радиолюбителями. Низкий Кш можно

компенсировать установкой осесимметричной антенны большого диаметра, например 1,5...2 м.

Преобразователь построен по схеме прямого усиления без предварительного усиления сигнала в полосе частот 10,95...11,36 ГГц. Такая схема тракта весьма проста, а усиление спутникового сигнала приходится на УПЧ в полосе частот 0,95...1,36 ГГи.

Сигнал ПЧ создается в смесительном диоде VD1 типа АА112А, а ответственную роль гетеродина выполняет диод VD3 типа АА703А (или типа АА703Б).

Названия типов диодов расшифровываются следующим образом:

первый элемент названия диода — буква А, это соединения галлия, из которых изготовлен диод;

второй элемент — буква, указывает подкласс полупроводникового прибора: А — диоды СВЧ;

третий элемент — трехзначное число, указывает назначение и качественные особенности полупроводникового прибора, а также порядковый номер разработки: диоды, в шифрах которых есть цифры от 101 до 199,— смесительные диоды СВЧ; диоды, в шифрах которых цифры от 701 до 799, — генераторные диоды СВЧ;

четвертый элемент — буква, которая указывает разновидность типа в названное группе полупроводниковых приборов.

Таким образом, диод типа АА703А — это СВЧ генераторный диод, который изготовлен из соединений галлия. Этот диод является наиболее важной деталью в конвертере. Диоды такого класса носят название диодов Ганна (создан в 1963 году). В отличие от выпрямительных, туннельных и диодов других типов, работа в которых определяется в р-n переходах, принцип действия диодов Ганна обусловлен процессами, возникающими в однородном полупроводнике с электронной проводимостью (без р-n перехода). Диод Ганна имеет динамическое отрицательное сопротивление, которое возникает благодаря объемному эффекту (эффекту Ганна) в таком однородном полупроводнике, поэтому при подключении к резонатору он может генерировать колебания СВЧ. При подключении к диоду высокодобротных резонаторов частота колебаний слабо зависит от напряжения питания диода и его нагрева и в основном определяется настройкой резонатора.

Конвертер работает следующим образом. Сигнал ПЧ через разделительный конденсатор С2 подается на малошумящий транзистор VT1, нагрузкой которого является индуктивность L2. Второй каскад на транзисторе VT2 является

таким же усилителем сигнала ПЧ, как и первый на транзисторе VT1.

Окончательное усиление сигнала ПЧ осуществляется в третьем каскаде на транзисторе VT3 до уровня те менее 25 дБ. Как и в первом каскаде, в усилителях ПЧ на транзисторах VT2 и VT3 в цепи коллектора используются индуктивности L3 и L4. На резисторе R9, установленном в эмиттерной цепи этого транзистора, создается отрицательная обратная связь по постоянному току, которая через резисторы R2, R4, R6 подается соответственно на базы транзисторов VT1...VT3. Резистор R 10 ограничивает величину тока через диод VD2 типа КС162А, предназначенный для двустороннего ограничения напряжения.

Постоянный ток транзисторов VT1...VT3 можно изменять путем подбора сопротивления резисторов R3, R5, R7. Величина тока коллектора определяет шумовые характеристики транзистора. Поэтому необходимо подбирать величину тока для каждого транзистора, что особенно важно для первого каскада усиления на транзисторе VT1. В принципиальной схеме приведены номиналы сопротивлений этих резисторов, которые являются оптимальными для транзисторов типа КТ3115 или КТ3132.

Через индуктивность L1 и резистор R1 протекает постоянный ток сдвига рабочей точки смесительного диода VD2. Контрольная точка КТ1 предназначена для подключения миллиамперметра для измерения величины этого тока.

Через индуктивность L5 протекает ток источника питания (напряжение питания — в пределах +9...15 В), поскольку СВЧ преобразователь питается по тому же коаксиальному кабелю, по которому поступает выходной сигнал ПЧ ко входу ресивера.

Параллельно проходным конденсаторам С4, С8, С13 желательно включить конденсаторы емкостью 4,7 пф (на рис. 8.13 не показаны). Это улучшит блокировку эмиттеров транзисторов VT1...VT3.

В усилителе ПЧ применены следующие радиодетали.

Индуктивности L1 и L5 — катушки из медного провода длиной 65 мм, диаметром 0,1...0,2 мм, намотанного на оправке диаметром 4 мм. Индуктивности L2...L4 — медные посеребренные провода диаметром 1 мм и длиной 10 мм, которые находятся на высоте 2 мм от дна корпуса усилителя.

Конденсаторы С2, С5, СП, С14 типа КД-1; конденсаторы С4, С8, С13 типа КТПМ; конденсаторы С16 типа К53-1 или аналогичный; конденсаторы С1, СЗ, С7, С9, С12, С15 типа КМ-5, у которых при монтаже оставлены минимальные выводы.

Резисторы R2, R4, R6 типа С-23-06 или аналогичные;

резистор R10 типа MAT-0,25, остальные резисторы — типа МЛТ-0,125.

Соединитель XI любого типа для соединения с коаксиальным кабелем с волновым сопротивлением 50 Ом, например СР-50.

Конструкция усилителя ПЧ конвертера может быть выполнена следующим образом. Усилитель помещают в цилиндрический влагонепроницаемый корпус, который изготовлен из тонкой листовой латуни (рис. 8.14).

На рис. 8.15 показан один из вариантов монтажа усилителя ПЧ преобразователя. Радиоэлементы VD1, R3, R5, R7, R8, R9, VD2 находятся с нижней стороны монтажной платы.

На рис. 8.16 схематично показано устройство части СВЧ преобразователя, в котором осуществляются генерации напряжения гетеродина и его смешивание с входным сигналом от передатчика ИСЗ.

Входной сигнал, отраженный от зеркала параболической антенны, поступает в круглый волновод (1), внутренняя поверхность которого должна быть полированной для уменьшения потерь сигнала. Далее сигнал поступает на плавный переход (2) с круглого волновода (1) на прямоугольный (3), который конструктивно состоит из двух симметричных частей. Между этими частями находится медная фольга определенной конфигурации, создающая электрическую линию (4). Эта линия обеспечивает режим холостого хода смесительного диода VD1 (см. рис 8.13) на частоте спутникового сигнала и короткого замыкания на зеркальной частоте, что обеспечивает снижение потерь преобразования.

Сигнал ПЧ с диода VD1 через полосковый фильтр (см. рис. 8.26) поступает на усили

8-24.jpg

8-25.jpg

тель. Фильтр создает короткое замыкание для частот принимаемого сигнала и гетеродина Между двумя фторопластовыми пластинами толщиной 1 мм зажата полосковая линия из медной фольги. Выходы смесительного диода VD1 припаяны к фольге как можно ближе к корпусу диода для уменьшения индуктивности выводов.

С другой стороны прямоугольного волновода (5) находится гетеродин (9) (диод Ганна), закрепленный в резонаторе (7). Питание диода (9) блокировано конструктивным конденсатором (8) (см. рис. 8.24). Цилиндрический резонатор (7) пространственно связан с волноводным отверстием (6).

Внешний вид конструкции СВЧ преобразователя показан на рис. 8.17. Верхняя обкладка блокировочного конденсато-

8-26.jpg

8-27.jpg

8-28.jpg

pa (6) изолирована от крышки резонатора (4) картонной прокладкой. Диод Ганна зажимается винтом (7), который ввинчивается в верхнюю обкладку блокировочного конденсатора. Внутренние поверхности резонатора полируют для повышения качества работы резонатора.

Прямоугольный волновод (рис. 8.18, 8.19) состоит из двух частей (рис. 8.20—8.24). Настройку СВЧ преобразователя начинают с гетеродина. Собирают гетеродин отдельно и подключают к нему регулируемый источник постоянного напряжения 0...12 В. При этом необходимо строго соблюдать полярность — широкий конец диода АА703А должен быть подключен к отрицательной полярности источника питания. Постепенно увеличивая напряжение, контролируют напря-

8-29.jpg

8-210.jpg

8-211.jpg

женность поля около выходного отверстия индикатором, который представляет собой диод сантиметрового диапазона (например, типа АК или ДКВ). К диоду подключают микроамперметр, например магнитофонный индикатор уровня марки М476. Если индикатор не зашкаливает при приближении диода к отверстию резонатора с увеличением напряжения до 12 В, то ко дну резонатора винтом М2 прикрепляют шайбу из фторопласта толщиной 2...3 мм, просверлив в ней отверстие для диода гетеродина.

8-212.jpg

Подбирая толщину или размер фторопластовой шайбы, добиваются устойчивой генерации. Это делают следующим образом: индикатор напряженности ставят вблизи отверстия, со стороны индикатора просовывают отражающую пластину. При этом измеряют расстояние между двумя положениями пластины, при которых показания индикатора изменяются с одного минимума на другой. Это будет половина длины волны в воздухе (для частоты 10ГГц—15мм). Подрегулировать частоту гетеродина можно фторопластовым винтом М5, который завинчивается в крышку резонатора.

После достижения необходимой частоты гете

8-213.jpg

родин подключают к усилителю ПЧ преобразователя и замеряют ток через диод VD1 типа АА112А. Ток должен быть в пределах 2...5 мА (подключенный к контрольной точке КТ1 индикатор М476 показывает 0 дБ).

Если через транзисторы VT1...VT3 протекает ток и отсутствует генерация (самовозбуждение) усилителя, то усилитель ПЧ преобразователя работоспособен. Потребление тока при напряжении питания 9...12 В составляет не более 350 мА.

Для непосредственного вешания со спутников используются два основных диапазона: С-диапазон (3,5...4,2 ГГи) и Ku-диапазон (10,7...12,75 ГГи). Ки-диапазон условно разбит на три части, которые также называются диапазонами.

Первый диапазон с полосой частот 10,7...11,8 ГГц обозначается FSS (Fixed Satellite Services), второй с 11,8...12,5 ГГц — DBS (Direct Broadcasting Satellite), третий с 12,5...12,75 ГГц — TELECOM.

Конвертеры С-диапазона принимают все сигналы «своей» полосы частот, но они абсолютно не пригодны для приема в Ки-диапазонах. Поэтому для диапазонов С и Ки необходимо использовать разные конвертеры.

Выпускаемые С-диапазонные конвертеры в основном предназначены для профессионального приема. Существуют и С-диапазонные конвертеры для индивидуального приема, например OXBRIDGE, VECOM, CALIFORNIA AMPLIFER, GARDINER. Часть выпускаемых моделей совмещены с облучателями.

Ки-конвертеры бывают трех типов: однодиапазонные с полосой частот 10,7...11,8 ГГц, двухдиапазонные с 10,7...12,5 ГГи и трехдиапазонные (Full Band) с полосой частот 10,7...12,75 ГГи.

Важнейшим параметром каждого конвертера является частота гетеродина, которую кратко обозначают LOF (Local Oscillator Frequency). В первых однодиапазонных конвертерах (см. рис. 8.12) частота гетеродина равнялась 10 ГГи. В современных полнодиапазонных конвертерах приняты другие значения частот гетеродинов. Для полнодиапазонных конвертеров дополнительно сообщают два параметра: LOF-1 (частота гетеродина 9,75 ГГи) и LOF-2 (10,6 или 10,75 ГГи). Эти указания дают возможность определить, какой сигнал предельной частоты будет принят спутниковым ресивером.

Конвертер состоит из следующих основных узлов (рис. 8.25). МШУ (1) усиливает спутниковый сигнал в полосе частот 10,9...12,7 ГГц, который подается на делитель (2). После разделения на два канала сигналы подаются через ППФ (3) на смесители (5). На каждый из смесителей подается сигнал от гетеродина (4). Low — низкочастотный гетеродин, High — высокочастотный.

Переключение диапазонов происходит путем переклю-

8-214.jpg

8-215.jpg

чения только гетеродинов (4) и первых каскадов УПЧ (6) каждого диапазона напряжением 13/18 В, поступающим по центральному проводнику коаксиального кабеля.

С того или иного УПЧ (6) сигнал поступает на делитель (7) и далее на второй УПЧ. Такие конвертеры выпускают фирмы «ECHOSTAR», «CHAPARAL», «CALIFORNIA AMPLIFER», «GARDINER». Сейчас получили распространение полнодиапазонные конвертеры другого типа (рис. 8.26). Сигналы спутников, находящихся на орбите, различаются по поляризации, что требует ее плавной подстройки. Например, вертикальная поляризация на спутниках TELECOM на 30° отличается от поляризации на спутнике EUTELSAT.

В волноводах таких конвертеров зонды V и Н поляриза-

8-216.jpg

ций расположены соосно, под углом 90°. В такой конструкции (предложена фирмой «CAMBRIDGE») один зонд затеняется другим, в связи с этим коэффициент шума V и Н поляризаций не одинаков.

Входные транзисторы по V и Н поляризациям работают на общую согласующую цепь (все МШУ). В отличие от предшествующих полнодиапазонных конвертеров этот имеет общий ППФ (2) на оба диапазона 10,7...12,7 ГГц. На смеситель (4) в нем переключаются только гетеродины (3) (Low и High), что существенно упрощает схемные решения и уменьшает габариты конвертера.

В конвертере CAMBRIDGE используется также УПЧ (5) на высокочастотных микросхемах (по усилению заменяет два СВЧ транзистора), что позволило сократить количество усилительных элементов.

В конвертерах фирм MNI и LASAT найдено оригинальное решение: смеситель и гетеродин собраны на одном транзисторе. В результате в конвертере стало одним каскадом меньше.

В конвертере OXFORD применена СВЧ микросхема, объединяющая оба гетеродина, смеситель и усилитель ПЧ. Такое решение стало очередным шагом к миниатюризации бытовых конвертеров.

Таким образом, полнодиапазонный конвертер (встречается название «интегральный») содержит два однополосных в одном корпусе с совмещенным облучателем. Конвертер, совмещенный с облучателем, сокращенно обозначается LNBF, т. е. LNB Full Band (рис. 8.27).

Конвертер справа имеет два выхода для одновременной регистрации сигналов V и Н поляризаций. В Full Band конвертерах сохранено переключение V и Н поляризаций напряжением 13/18 В (в первом и втором диапазонах способ один и тот же). Это означает, что интегральные полнодиапазонные конвертеры могут быть использованы совместно с ресиверами старого типа с полосой частот 10,7...11,8 ГГц. В конвертере также осуществляется переключение гетеродинов для работы в диапазонах FSS или DBS.

В современных так называемых «универсальных»,конвер-терах верхний диапазон (DBS и TELECOM) включается с помощью тонового сигнала 22 кГц, который имеет форму меандра амплитудой 0,6 В. При появлении в коаксиальном кабеле (здесь же передается промежуточная частота от конвертера к ресиверу) сигнала 22 кГц, который добавляется к постоянному напряжению питания конвертера 13/18 В, приводится в действие второй гетеродин (LOF-2). В этом случае конвертер будет принимать сигналы частот диапазона 11,7...12,75 ГГц. Без сигнала с частотой 22 кГц в действие приводится только первый гетеродин (LOF-1), и конвертер работает как однополосный. Напряжение 13/18 В в таких универсальных конвертерах используется для переключения поляризации.

Универсальные конвертеры выпускают фирмы «OXFORD», «OXBRIDGE», «CAMBRIDGE», «VECOM», «GRUNDIG» и др.

Следует отметить, что конвертер усиливает не только полезный сигнал, но и приходящие с ним шумы. Кроме того, как и любой электронный прибор, он сам повышает уровень шума. Для конвертеров Кu-диапазона шум измеряется в децибелах.

Лучшие конвертеры имеют коэффициент шума 0,5...0,8 дБ, худшие — 1,0...1,3 дБ и более. При использовании конвертера с меньшим Кш можно «сэкономить» на диаметре параболической антенны при том же качестве воспроизведения изображения на экране телевизора.

Шум конвертеров С-диапазона измеряется в градусах Кельвина (К) и лежит в пределах 15...50 К. Чем меньше шум конвертера (значение Кш ниже), тем меньше он вносит искажений в телевизионный сигнал и тем дороже стоит.

Если необходимо вести прием в диапазонах С и Кu, в фокусе антенны можно установить два конвертера (рис. 8.28). Каждый конвертер имеет свой облучатель и поляризатор. При этом облучатель хотя бы одного конвертера окажется не совсем в фокусе антенны, что несколько снизит коэффициент направленного действия антенны и ослабит принимаемый сигнал. Однако в большинстве случаев в зоне обслуживания спутников такая потеря сигнала может быть практически незаметной.

8-217.jpg

Второй путь — можно приобрести конструкцию, называемую С/Ки-ротором. Это устройство включает в себя облучатели для С и Кu диапазонов, разделяющие принимаемый электромагнитный поток на две части. С/Кu-роторы совмещены с электромеханическими поляризаторами. Эта конструкция снижает стоимость системы и упрощает процесс

Основные недостатки конструкции С/Кu-ротора следующие:более значительные потери мощности сигналов Ku-диапазона; частый выход из строя движущихся частей электромеханического поляризатора, особенно при низких температурах.

8-218.jpg

В настоящее время налажен выпуск совмещенных конвертеров для приема сигналов в С и Кu диапазонах. Такие конвертеры по техническим параметрам пока уступают однодиапазонным конвертерам, однако обеспечение приема в обоих диапазонах является наименее трудоемким. В табл. 8.1 представлены технические и эстетические параметры некоторых конвертеров Кu-диапазона.

Выход конвертера соединяется с ресивером с помощью коаксиального кабеля, на концах которого необходимо установить так называемые F-соединители.

На рис. 8.29 показаны F-соединитель (слева) и этапы подготовки (разделки) коаксиального кабеля для соединения с ним. На первом этапе снимают защитную оболочку кабеля. Затем с центрального проводника кабеля снимают изоляцию (диэлектрик внутри оплетки кабеля). На третьем этапе оплетку кабеля отгибают на защитную оболочку. После этого

8-219.jpg

8-220.jpg

на кабель насаживают F-соединитель. При этом роль центрального штыря соединителя выполняет внутренний проводник кабеля. При стыковке F-соединителя с кабелем дополнительная пайка не нужна.

Далее необходимо обеспечить защиту места стыковки от атмосферных осадков (рис. 8.30). На место соединения наматывают 8...10 витков изоляционной ленты типа ПХВ. Чтобы лента с

течением времени самопроизвольно не разматывалась, на место стыковки необходимо наложить проволочный бандаж. На конвертер, а также на выходной соединитель с коаксиальным кабелем, постоянно воздействуют атмосферные явления и другие факторы. Как правило, производители конвертеров не снабжают его защитным футляром. Поэтому некоторые владельцы спутниковой аппаратуры устанавливают защитные устройства самостоятельно. Конструкцию защитного устройства(рис. 8.31) предложил В. Ткачев (г. Лоев).

Она состоит из трех основных деталей: алюминиевой полоски толщиной 1,5...2 мм и длиной 140...160 мм; дуги для крепления конвертера; пластмассовой прозрачной бутылки.

Используют две полоски, в которых предварительно просверливают два отверстия и в них нарезают резьбу М4. Затем полоски изгибают (рис. 8.31,б)и привинчивают к дуге крепления головки.

Следующий этап — изготовление футляра из пластмассовой прозрачной бутылки объемом 1 л. Затем конвертер закрепляют и настраивают на рабочее положение. Сверху надевают пластмассовый футляр, в котором просверливают четыре отверстия напротив отверстий в полосках алюминия. Футляр закрепляют болтиками над конвертером, находящимся внутри. В результате конвертер защищен от дождя и снега. Для защиты от перегрева прямыми солнечными лучами пластиковую заготовку изнутри окрашивают в белый цвет.

Однако установка защитного футляра приводит к дополнительному затенению зеркала параболической антенны, что снижает коэффициент использования его поверхности. При слабом уровне сигнала спутникового ретранслятора в месте установки антенны защитный футляр значительно ухудшает качество телевизионного приема.

8-221.jpg

8.3. Приемники спутникового телевидения

В мире уже существует множество торговых марок спутниковых ресиверов. Фактически любой из них можно использовать для индивидуальной приемной системы спутникового телевидения. Ни одна из фирм-производителей ресиверов не поставляет владельцу принципиальных электрических схем, поэтому познакомимся с принципом работы узлов ресивера с помощью упрощенной радиолюбительской схемы (рис. 8.32).

Ресивер представляет собой УКВ ЧМ приемник с полосой пропускания 30 МГц. Сигнал от СВЧ преобразователя по коаксиальному кабелю поступает на входной перестраиваемый фильтр (ПФ1), подавляющий зеркальный канал. Усилительный каскад (УК-1) компенсирует потери сигнала в фильтре. Затем сигнал подается на смесительный каскад (См1). Сюда же идет сигнал от гетеродина, перекрывающего широкий спектр частот 1,25...2,2 ГГц в зависимости от положения регулятора «Настройка». В смесителе (См1) выделяется первая промежуточная частота 450 МГц (среднее значение) и усиливается резонансно-полосовым усилителем (РПУ). Далее в цепи усилителя РПУ включается аттенюатор АТТ, который выравнивает уровень сигнала при сильных изменениях его на входе.

После аттенюатора ослабленный сигнал вновь усиливается каскадом (УК2) и поступает на второй смеситель (См2).

8-31.jpg

Необходимость использования этого устройства обусловлена тем, что на частоте 450 МГц очень трудно получить большое усиление и крутые фронты фильтров. Поэтому первая промежуточная частота преобразуется во вторую на 70 МГц. Для этого используется второй гетеродин, вырабатывающий сигнал с частотой 520 МГц.

Далее следует широкополосный усилитель (ШУ) на двух транзисторах. Столь сложная схема усилителя оправдана в первую очередь его стабильностью. ШУ не склонен к самовозбуждению, а между его каскадами включен фильтр нижних частот (ФНЧ), который резко подавляет спектр частот выше 84 МГц.

Усилительный каскад (УКЗ) компенсирует потери в ФНЧ. Затем фильтр высоких частот (ФВЧ) подавляет все частоты ниже 54 МГц. Таким образом формируется полоса шириной 30 МГц, необходимая для пропускания полного цветового телевизионного сигнала (ПЦТС).

После ФВЧ сигнал поступает на усилительные каскады (УК1) и (VK5), которые осуществляют дополнительное усиление ПЦTC перед подачей его на устройство ограничения.

Детектор обеспечивает полосу детектирования частотно-модулированного сигнала 30 МГц при средней частоте 70 МГц. При превышении определенного уровня сигнала на входе ограничителя сигнал усиливается усилителем УК АРУ и подается на аттенюатор (АТТ), который шунтирует сигнал на «землю».

Полученный после ЧМ детектора сигнал усиливается видеоусилителем (ВУ), который обеспечивает полосу пропускания до 6 МГц. Далее включается видеофильтр (ВФ), обеспечивающий компенсацию частотных предыскажений в передающих трактах Земля — спутник и спутник — Земля. Это обусловлено свойствами ЧМ сигнала. Практически устройство ВФ ограничивает высокие частоты и полностью «срезает» сигнал выше цветовой поднесущей.

На выходе канала изображения приемника установлен двойной эмиттерный повторитель (ЭП). Столь мощный выход необходим для работы на коаксиальный кабель, длина которого может достигать десятков метров, а также для подключения нескольких телевизоров через согласующие устройства.

В приемнике предусмотрена автоматическая подстройка частоты (АПЧ), хотя практически в ней нет необходимости. Поэтому в приемнике предусмотрена возможность отключения АПЧ.

В системе спутникового телевизионного вешания по каналу связи кроме сигнала изображения передается и другая информация. Это обычное звуковое сопровождение на поднесушей частоте в пределах 5...10 МГц. Есть еще и стереофоническое звуковое сопровождение, отдельные звуковые каналы, передающие стерео и монорадиограммы, код шифрованных телевизионных каналов и др. Так как программ много и звуковое сопровождение может быть на разных поднесуших частотах, необходима оперативная перестройка приемника. Этим оправдана относительно сложная часть звукового тракта.

На звуковой тракт сигнал поступает с ЧМ детектора через полосовой фильтр (ПФ2), настроенный на среднюю частоту 6,5 МГц, и далее — на вход смесителя (СмЗ). Здесь используется микросхема, которая выполняет роль как смесителя, так и гетеродина. Последний перестраивается в пределах 15,7...18,7 МГц.

На выходе микросхемы получаем ПЧ звука, равную 10,7 МГц. Это уже стандартная ПЧ для УКВ ЧМ приемников и в тракте звука можно использовать стандартный ПЧ фильтр Z1 на частоту 10,7 МГц.

После усиления и ограничения сигнал поступает на ЧМ детектор и далее — на усилитель звуковой частоты (УЗЧ) и громкоговоритель (Гр). Сигнал звукового сопровождена можно подать на вход УЗЧ бытового телевизора.

Автоматическая подстройка частоты звука (АПЧ) очень желательна, так как при сильном сигнале она проводит «захват» звуковой поднесушей и в большинстве случаев не требует ручной перестройки при переключении каналов.

8-32.jpg

8-33.jpg

8-34.jpg

Спутниковый ресивер по внешнему виду и размерам напоминает видеомагнитофон (рис. 8.33, 8.34).

К внешним устройствам ресивер подключается с помощью соединителей типа «колокольчик» и SCART (рис. 8.35). Внешний вид контактов соединителя SCART показан на рис. 8.36. На рис. 8.37 показаны выходные гнезда отечественного ресивера «Витязь ТСТ-002С».

Управление всеми ресиверами осуществляется с помощью пульта дистанционного управления (ПДУ). В ПЛУ

(рис. 8.38) вмонтирован передатчик команд, работающий на инфракрасных лучах (ИКЛ). Непосредственно в ресивере находится приемник ИКЛ.

Важнейшей характеристикой любого ресивера является его статический порог, который определяет отношение сигнал/шум на выходе ресивера от отношения сигнал/шум сигнала, поступающего на вход ресивера с конвертера (рис. 8.39). Общепринятой величиной статического порога является 6 дБ. При уменьшении этого соотношения изображение на экране телевизора резко ухудшается.

В табл. 8.2 приведены характеристики некоторых зарубежных ресиверов спутникового телевидения, работающих по аналоговым системам цветного телевидения.

Ресивер может быть подключен к телевизору несколькими способами (рис. 8.40). Эфирная антенна наземного телевидения включается в гнездо ANT IN ресивера, далее через ряд соединителей сигнал подается на антенный вход телевизора. С ресивера сигнал поступает на видеомагнитофон и телевизор, например в 36-м канале ДМВ, поэтому те-

8-35.jpg

8-36.jpg

8-37.jpg

левизор должен быть оснащен селектором каналов (СКД) ДМВ. Если этот канал занят местным эфирным вещанием, то в ресивере и видеомагнитофоне предусмотрена возможность перестройки на другой канал ДМВ по усмотрению владельца аппаратуры.

В большинстве современных моделей телевизоров предусмотрены низкочастотные входы в виде соединителей SCART или «коло-

01.jpg

8-38.jpg

8-39.jpg

8-310.jpg

8-311.jpg

кольчик». Предпочтительно подключать ресивер к телевизору с помощью кабеля, который завершается с обеих сторон соединителем SCART или двумя соединителями «колокольчик». В случае низкочастотного подключения телевизор необходимо перевести в режим монитора согласно инструкции по его эксплуатации («Режим AV»).

Необходимо обратить внимание на наличие в телевизоре декодера PAL/SECAM, чтобы иметь возможность принимать телевизионные передачи с западноевропейских спутников в цвете и со звуковым сопровождением.

Многие спутники ведут телевизионное вещание по стандарту D2-MAC. Ни один из бытовых телевизоров не может принять передачи по этому стандарту, поэтому к ресиверу необходимо дополнительно подключить декодер D/D2-МАС. Некоторые ресиверы имеют встроенный D/D2-MAC (табл. 8.3).

Таблица 8.3

8-312.jpg

Сложнее обстоит дело с приемом цифрового телевидения по стандарту MPEG-2. В этом случае необходимы специальный телевизионный приемник и замена всего тракта системы приема спутникового телевидения, пожалуй, за исключением антенны. Те, кто хочет вести прием программ с ИСЗ по стандарту MPEG-2, должны приобрести новый комплект оборудования. И это оправдано, так как, например, после запуска спутников НОТ BIRD-3...6 владелец аппаратуры цифрового телевидения сможет смотреть около 400 программ только с одной позиции 13° Е.

Выбирая ресивер, следует обратить внимание на одну из важнейших его характеристик. Это ширина полосы первой ПЧ, т. е. частоты, поступающей на вход ресивера после конвертера, который преобразует СВЧ, передаваемые со спутника, в более низкие, удобные для дальнейшей обработки. Чем шире полоса промежуточной частоты, тем большее количество спутниковых программ вы сможете охватить. В современных ресиверах часто встречаются полосы частот 950...2050, 700...2050 и 900...2150 МГц. Третий вариант позволяет принимать весь Кu-диапазон в системе с универсальным конвертером.

Современные ресиверы позволяют корректировать качество изображения различных спутниковых каналов за счет уменьшения ширины промежуточной частоты видеосигнала

11.jpg

8-313.jpg

с 36 до 9 МГц. Она может меняться плавно, с шагом 1 МГц (ресивер Echostar 8700) или дискретно: 9/13/15/27 МГц (ресивер Manhatten 7400+ и др.) Сужение полосы позволяет избавиться от импульсных помех, но при этом цветное изображение становится более тусклым и невыразительным.

Для переключения частотных поддиапазонов гетеродина полнодиапазонного или двухдиапазонного конвертеров в ресиверах часто предусмотрен тоновый генератор частотой 22 кГц. Опытные радиолюбители могут самостоятельно собрать генератор по схеме (рис. 8.41).

Задающий генератор прямоугольных импульсов с частотой 22 кГц собран на микросхеме DA1. С выхода 3 через резистор R4 импульсы подаются на базу транзистора VT1. Когда транзистор закрыт, на диоде VD2 падает напряжение (около 0,7 В). Когда транзистор открыт, диод VD2 шунтируется малым сопротивлением его перехода эмиттер-коллектор и снижение напряжения на диоде составляет примерно 0,1 В. Подбором сопротивления резистора R 4 устанавливают такой режим работы транзистора VT1, чтобы он был надежно открыт при отрицательном импульсе на базе и надежно закрыт при положительном.

Подбором сопротивления резистора R3 устанавливают частоту импульсов на выводе 3 DA1, равную 22 кГц (период колебаний 42...50 мкс).

Стабилитрон VD1 обеспечивает неизменность частоты тона при переключении напряжения питания 13/18 В. Развязывающий фильтр в цепи питания не нужен. При напряжении питания 18 В генератор потребляет ток 8 мА.

Прибор предназначен для использования двухдиапазонных конвертеров с ресиверами, не имеющими управляющего сигнала 22 кГц. Он разработан в лаборатории спутникового телевидения фирмы «General Satellite».

Часто возникает вопрос о просмотре телевизионных программ с нескольких спутников, которые находятся на разных позициях ГСО. С помощью специальных устройств антенна может дистанционно позиционироваться на разные спутники. Передвигает специальное приспособление — актуатор. Это обычный выдвижной рычаг-толкатель с электродвигателем, управляемый электрическими сигналами.

Обычно для антенн диаметром 1,2...1,5 м используется 12-дюймовый актуатор (12 дюймов — его длина), а для антенн диаметром 1,8...2,0 м — 18-дюймовый. Для антенн меньших диаметров обычно используется другое поворотное устройство — SuperMount (супермаунт), которое позволяет, в отличие от актуатора, вращать антенну «от горизонта до горизонта», «захватив» при этом все спутники, с которых возможен прием сигнала. Супермаунты менее устойчивы к ветровым нагрузкам, чем устройства с актуатором, поэтому они используются только для антенн диаметром 0,9...1,2 м.

Для управления актуатором или супермаунтом необходимо специальное устройство — позиционер, который подает управляющие сигналы и питание на актуатор. Управляющие сигналы — это импульсы от датчиков актуаторов. Например, чтобы сориентировать антенну на первую позицию, необходимо послать 400 импульсов, на вторую — 600, а на третью — 300. Для идентификации положения антенны следящие системы используют реверсивные счетчики, которые ведут отсчет в прямом и обратном направлениях. Они считают каждый импульс датчика, причем счетчик срабатывает только на замыкание или на размыкание геркона (герметизированный контакт — реле).

Иногда позиционер выполняют в виде отдельного блока, который по форме напоминает ресивер. Однако есть некоторые модели ресиверов, интегрированных с позиционером (табл. 8.4).

Если позиционер выполнен в виде отдельного блока, необходимо, чтобы ресивер имел функцию управления внешним позииионером. Управление перемещением антенны может осуществляться по заданной программе, с помощью которой осуществляется наведение на 6...10 и более спутников. Необходимо обращать внимание на то, чтобы ток управления актуатором был необходимой величины для данной модели ресивера.

К сервисным возможностям ресивера можно отнести функции телетекста и таймера. Практически все современные модели ресиверов снабжены таймером, который включает и выключает спутниковый приемник в определенное время. Эту функцию удобно использовать для записи передач на видеомагнитофон.

Например, ресивер NTV-3000, предназначенный для приема программ НТВ-Плюс, благодаря наличию таймера и третьего соединителя SCART позволяет в отсутствие пользователя записывать передачи со спутника с программированием начала записи на 28 дней вперед. При этом не нужно оставлять телевизор включенным.

Многие ресиверы имеют «родительский ключ», чтобы не допустить детей к тем или иным программам. Тот же ресивер NTV-3000 позволяет закрыть паролем доступ к любому каналу. Это очень удобно, если ребенок, когда он дома один, смотрит боевики или репортажи со спортивных матчей, вместо того, чтобы делать уроки. Наличие эротических передач на НТВ-Плюс делает эту функцию еще более актуальной.

Количество каналов, запоминаемых ресивером, в дорогих моделях может быть от 99 до нескольких сотен. Обычно ресиверы запрограммированы на наиболее популярные в Европе каналы. Однако часто возникает необходимость переименовать заложенные в память спутникового приемника программы. Многие ресиверы позволяют это сделать.

Как и для видеосигнала, для сигнала звукового сопровождения важную роль играет ширина промежуточной частоты. Сужая эту полосу, можно отстраниться от помех, пожертвовав качеством звука. В разных моделях ресиверов полоса ПЧ звука изменяется или плавно в пределах 130...600 МГц (все модификации ресиверов Расе), или дискретно: 110/180/280/380 МГц (ресиверы Echostar LT730, LT950 и др.)

Некоторые спутники передают наиболее популярные программы на нескольких языках. Например, программа Eurosport со спутника НОТ BIRD-1 передается на шести языках, для

этого используется соответствующее число поднесуших частот. Ресивер позволяет владельцу спутниковой системы выбрать звуковое сопровождение на одном из них по своему усмотрению.

Любой ресивер может принимать звуковое сопровождение в моно- или стереоварианте, однако только некоторые модели имеют систему воспроизведения «объемного звучания». Для меломанов в некоторых моделях существует функция Dolby Pro-Logic surround sound, которая позволяет моделировать различные аудиоэффекты (студия, театр, стадион, космос и др.). Это ресиверы моделей Расе MSS 538G, Amstrad SRX2001 и др.

Большинство спутниковых приемников предполагает использование внешнего усилителя звуковой частоты в телевизоре, аудиосистеме. Однако появились модели Расе MSS 1034 и 1038, которые имеют УЗЧ мощностью 4 х 25 Вт. К ним достаточно подсоединить акустические колонки.

 Вернуться к оглавлению Части 2

Rambler's Top100